Откуда берётся электричество? Источники электроэнергии Как вырабатывается электричество в генераторе

По десятку раз на дню, включая и выключая свет и пользуясь бытовой техникой, мы даже не задумываемся, откуда берется электричество и какова его природа. Понятно конечно, что по ЛЭП (линия электропередач ) оно поступает от ближайшей электростанции, но это весьма ограниченное представление об окружающем мире. А ведь если выработка электроэнергии во всем мире прекратится хотя бы на пару дней, количество погибших будет измеряться сотнями миллионов.

Как возникает ток?

Из курса физики мы знаем, что:

  • Вся материя состоит из атомов, мельчайших частиц.
  • По орбите вокруг ядра атома вращаются электроны, они имеют отрицательный заряд.
  • В ядре располагаются положительно заряженные протоны.
  • В норме эта система находится в состоянии равновесия.

А вот если хоть один атом потеряет всего один электрон:

  1. Его заряд станет положительным.
  2. Положительно заряженный атом начнет притягивать к себе электрон, из-за разности зарядов.
  3. Чтобы получить для себя недостающий электрон, его придется «сорвать» с чьей-то орбиты.
  4. В результате еще один атом станет положительно заряженным и все повторится, начиная с первого пункта.
  5. Такая цикличность приведет к образованию электрической цепи и линейному распространению тока.

Так что с точки зрения ядерной физики все предельно просто, атом пытается получить то, чего ему больше всего не хватает и таким образом запускает начало реакции .

«Золотой век» электроэнергии

Под свои нужды человек приспособил законы Вселенной относительно недавно. А произошло это примерно два века назад, когда изобретатель по фамилии Вольт разработал первый аккумулятор, способный на длительное время сохранять заряд достаточной мощности.

Попытки использовать ток себе во благо имеют древнюю историю. Археологические раскопки показали, что еще в римских святилищах, а потом и в первых христианских храмах были кустарные «батарейки» из меди, которые давали минимальное напряжение. Такая система подключалась к алтарю или его оградке и как только верующий прикасался к сооружению, он тут же получал «божественную искру ». Скорее это изобретение одного умельца, чем повсеместная практика, но факт любопытный, в любом случае.

Двадцатый век стал периодом расцвета электроэнергии :

  1. Появлялись не только новые виды генераторов и аккумуляторов, но и разрабатывались уникальные концепции добычи этой самой энергии.
  2. Электрические приборы за несколько десятилетий плотно вошли в жизнь каждого человека на планете.
  3. Не осталось стран, кроме наименее развитых, где не были бы построены электростанции и проведены линии электропередач .
  4. Весь дальнейший прогресс опирался на возможности электричества и устройств, которые от него работают.
  5. Эпоха компьютеризации сделала человека зависимым от тока, в прямом смысле этого слова.

Как получить электричество?

Представлять человека в виде наркомана, которому регулярно необходима «живительная доза электричества» немного наивно, но попробуйте полностью обесточить свое жилище и спокойно прожить хотя бы сутки. Отчаянье может заставить вспомнить оригинальные способы добычи тока. На практике это мало кому пригодится, но может кому-то пара Вольт спасет жизнь или поможет произвести впечатление на ребенка:

  • Разрядившийся аккумулятор телефона можно потереть об одежду, подойдут джинсы или шерстяной свитер. Статического электричества надолго не хватит, но это уже хоть что-то.
  • Если рядом есть морская вода , можно налить ее в две банки или стакана, соединить их медным проводом, предварительно обмотав его оба конца фольгой. Конечно для всего этого, помимо соленой воды, понадобятся еще емкости, медь и фольга. Не лучший вариант для экстремальных ситуаций.
  • Куда реалистичнее наличие железного гвоздя и небольшого медного прибора. Два куска металла следует использовать как анод и катод - гвоздь в ближайшее дерево, медь в землю. Между ними натянуть любую нить, незамысловатая конструкция даст примерно один Вольт.
  • Если использовать драгоценные металлы - золото и серебро, получится добиться большего напряжения.

Как экономить электричество?

У экономии электроэнергии могут быть разные причины - желание сохранить экологию, попытка уменьшить ежемесячные счета или что-то другое. Но способы всегда примерно одни:

Не всегда следует себя в чем-то сурово ограничивать, чтобы снизить расходы. Есть еще один неплохой совет - отключайте от сети все приборы, пока вы ими не пользуетесь .

Холодильник, естественно, не в счет. Даже находясь в «ждущем» режиме техника потребляет некоторое количество электричества. Но если хоть на секунду задуматься, то можно прийти к мысли, что почти все приборы большую часть суток вам не нужны. И все это время они продолжают сжигать ваше электричество .

Современные технологии тоже нацелены на то, чтобы снизить общий уровень потребления электроэнергии. Чего стоят хотя бы энергосберегающие лампочки , которые могут уменьшить расходы на освещение помещения, раз так в пять. Совет жить по «солнечным часам» может показаться диким и абсурдным, но уже давно доказано, что искусственное освещение повышает риск развития депрессии.

Как вырабатывается электричество?

Если углубляться в научные детали:

  1. Ток появляется за счет потери атомом электрона.
  2. Положительно заряженный атом притягивает к себе отрицательно заряженные частицы.
  3. Происходит потеря другим атомом своих электронов с орбиты и история повторяется снова.
  4. Это объясняет направленное движение тока и наличие вектора распространения.

А вообще электричество вырабатывается электростанциями . Там либо сжигают топливо, либо используют энергию расщепления атомов, а может даже пускают в ход природные стихии. Речь идет о солнечных батареях, ветряках и ГРЭС.

Полученную механическую или тепловую энергию, за счет генератора, переводят в ток. Он накапливается в аккумуляторах и по ЛЭП поступает в каждый дом.

Сегодня не обязательно знать, откуда берется электричество, чтобы пользоваться всеми благами, которое оно предоставляет. Люди уже давно отошли от первоначальной сути вещей и потихоньку начинают о ней забывать.

Видео: откуда поступает электричество к нам?

В этом видео наглядно будет показан путь электричества от электростанции до нас, откуда оно берется и как поступает в наш дом:

Для решения проблемы ограниченности ископаемых видов топлива исследователи во всем мире работают над созданием и внедрением в эксплуатацию альтернативных источников энергии. И речь идет не только о всем известных ветряках и солнечных батареях. На смену газу и нефти может прийти энергия от водорослей, вулканов и человеческих шагов. Recycle выбрал десять самых интересных и экологически чистых энерго-источников будущего.


Джоули из турникетов

Тысячи людей каждый день проходят через турникеты при входе на железнодорожные станции. Сразу в нескольких исследовательских центрах мира появилась идея использовать поток людей в качестве инновационного генератора энергии. Японская компания East Japan Railway Company решила оснастить каждый турникет на железнодорожных станциях генераторами. Установка работает на вокзале в токийском районе Сибуя: в пол под турникетами встроены пьезоэлементы, которые производят электричество от давления и вибрации, которую они получают, когда люди наступают на них.

Другая технология «энерго-турникетов» уже используется в Китае и в Нидерландах. В этих странах инженеры решили использовать не эффект нажатия на пьезоэлементы, а эффект толкания ручек турникета или дверей-турникетов. Концепция голландской компании Boon Edam предполагает замену стандартных дверец при входе в торговые центры (которые обычно работают по системе фотоэлемента и сами начинают крутиться) на двери, которые посетитель должен толкать и таким образом производить электроэнергию.

В голландском центре Natuurcafe La Port такие двери-генераторы уже появились. Каждая из них производит около 4600 киловатт-час энергии в год, что на первый взгляд может показаться незначительным, но служит неплохим примером альтернативной технологии по выработке электричества.


Нет сегодня ни одной области техники, где в том или ином виде не использовалось бы электричество. Между тем, с требованиями к электрическим аппаратам связан род тока, питающего их. И хотя переменный ток распространен нынче по всему миру очень широко, есть тем не менее области, где просто не обойтись без постоянного тока.

Первыми источниками годного к использованию постоянного тока были гальванические элементы, которые принципиально давали химическим путем именно , представляющий собой поток электронов, движущихся в одном неизменном направлении. От этого и название у него «постоянный ток».

Сегодня постоянный ток получают не только от батареек и аккумуляторов, но и путем выпрямления переменного тока. Как раз о том, где и почему используется в наш век постоянный ток, и пойдет речь в данной статье.

Начнем с тяговых двигателей электротранспорта. Метро, троллейбусы, теплоходы и электрички традиционно приводятся в движение двигателями, питаемыми постоянным током. изначально отличались от двигателей тока переменного тем, что в них можно было плавно изменять скорость при сохранении высокого крутящего момента.

Переменное напряжение выпрямляется на тяговой подстанции, после чего подается на контактную сеть, - так получают постоянный ток для общественного электротранспорта. На теплоходах электричество для питания двигателей может быть получено от дизельных генераторов постоянного тока.

В электромобилях так же применяются моторы постоянного тока, которые питаются от аккумулятора, и здесь снова получаем преимущество в виде быстро развиваемого крутящего момента привода, и имеем еще один важный плюс - возможность рекуперативного торможения. В момент торможения мотор превращается в генератор постоянного тока и заряжает .


Мощные подъемные краны на металлургических заводах, где необходимо плавно орудовать огромного размера и чудовищной массы ковшами с расплавленным металлом - используют моторы постоянного тока опять же в силу их отличной регулируемости. Это же преимущество относится к применению моторов постоянного тока в шагающих экскаваторах.


Бесколлекторные двигатели постоянного тока способны развивать огромные скорости вращения, измеряемые десятками и сотнями тысяч оборотов в минуту. Так, высокоскоростные электродвигатели постоянного тока небольших размеров устанавливают на жесткие диски, квадрокоптеры, пылесосы и т. д. Незаменимы они и в качестве шаговых приводов управления различными шасси.


Само по себе прохождение электронов и ионов в одном направлении при постоянном токе делает постоянный ток принципиально незаменимым .

Реакция разложения в электролите, под действием в нем постоянного тока, позволяет осадить на электродах определенные элементы. Так получают алюминий, магний, медь, марганец и другие металлы, а также газы: водород, фтор и т.д, и многие прочие вещества. Благодаря электролизу, то есть по сути - постоянному току, существуют целые отрасли металлургии и химической промышленности.


Гальванотехника немыслима без постоянного тока. Металлы осаждают на поверхность изделий различной формы, таким образом осуществляют в частности хромирование и никелирование, создают печатные формы и металлические монументы. Что и говорить о применении гальванизации в медицине для лечения болезней.


Сварка на постоянном токе гораздо эффективнее, чем на токе переменном, шов получается на много более качественным, чем при сварке того же изделия тем же электродом, но током переменным. Все современные выдают на электрод постоянное напряжение.


Мощные дуговые лампы, устанавливаемые в кинопроекторах многочисленных профессиональных киностудий дают ровный свет без гудящей дуги как раз благодаря питанию дуги постоянным током. Светодиоды, так те принципиально питаются током постоянным, именно поэтому большинство сегодняшних прожекторов питаются постоянным током, хотя и получаемым путем преобразования переменного сетевого тока или же от аккумуляторов (что иногда очень даже удобно).


Двигатель внутреннего сгорания автомобиля хоть и питается бензином, однако стартует он от аккумулятора. И здесь постоянный ток. Стартер получает питание от батареи с напряжением в 12 вольт, и в момент старта забирает от нее ток в десятки ампер.

После старта аккумулятор в автомобиле заряжается генератором, который вырабатывает переменный трехфазный ток, тут же выпрямляемый и подаваемый на клеммы аккумулятора. Переменным током аккумулятор не зарядишь.


А резервные источники питания? Если даже огромная электростанция встала из-за аварии, то и здесь дать старт турбогенераторам помогут вспомогательные аккумуляторы. И самые простые домашние источники бесперебойного питания компьютеров - тоже не обойдутся без аккумуляторов, дающих постоянный ток, из которого путем преобразования в инверторе получается ток переменный. А сигнальные лампы и - почти везде питается от аккумуляторов, то есть и здесь пригодился постоянный ток.


Подводная лодка - и та использует на борту постоянный ток для питания электродвигателя, вращающего гребной винт. Вращение турбогенератора на самых современных атомоходах хотя и достигается путем ядерных реакций, однако электроэнергия подается на двигатель в виде все того же постоянного тока. Это же касается и дизель-электрических субмарин.


И конечно, не только электровозы шахт, погрузчики или электрокары используют постоянный ток от аккумуляторов. Все электронные гаджеты, которые мы носим с собой, содержат литиевые аккумуляторы, которые выдают постоянное напряжение и заряжаются постоянным током от зарядных устройств. А если вспомнить радиосвязь, телевидение, радио- и теле- вещание, интернет и т. д. На самом деле выходит, что добрая часть всех устройств питается прямо или косвенно постоянным током от аккумуляторов.

Генератор переменного тока или генератор постоянного тока представляют собой устройство выработки электричества путём преобразования механической энергии.

Как выглядит генератор переменного тока

Как работает генератор переменного тока? Ток генерируется в проводнике под действием магнитного поля. Удобно вырабатывать ток, если вращать прямоугольную электропроводную рамку в неподвижном поле или постоянного магнита внутри её.

При его вращении вокруг оси создаваемого им магнитного поля внутри рамки с угловой скоростью ω, вертикальные стороны контура будут активными, поскольку они пересекаются магнитными линиями. На совпадающие по направлению с магнитным полем горизонтальные стороны нет никакого действия. Поэтому в них ток не индуцируется.

Как выглядит генератор с магнитным ротором

ЭДС в рамке составит:

e = 2 B max lv sin ωt ,

B max – максимальная индукция, Тл;

l – высота рамки, м;

v – скорость рамки, м/с;

t – время, с.

Таким образом, от действия изменяющегося магнитного поля в проводнике индуцируется переменная ЭДС.

Для большого количества витков w , выразив формулу через максимальный поток F m , получим такое выражение:

e = wF m sin ω t .

Принцип работы генератора переменного тока другого типа основан на вращении токопроводящей рамки между двумя постоянными магнитами с противоположными полюсами. Простейший пример приведён на рисунке ниже. Появляющееся в ней напряжение снимается токосъёмными кольцами.

Генератор тока с постоянными магнитами

Применение устройства не очень распространено из-за нагрузки подвижных контактов большим током, проходящим через ротор. Конструкция первого приведённого варианта также их содержит, но через них подаётся значительно меньше постоянного тока через витки вращающегося электромагнита, а основная мощность снимается с неподвижной обмотки статора.

Синхронный генератор

Особенностью устройства является равенство между частотой f , наведённой в статоре ЭДС и частотой оборотов ротора ω :

ω = 60∙ f / p об/мин,

где p – количество пар полюсов в обмотке статора.

Синхронный генератор создаёт в обмотке статора ЭДС, мгновенное значение которой определяется из выражения:

e = 2 π B max lwDn sin ω t,

где l и D – длина и внутренний диаметр сердечника статора.

Синхронный генератор вырабатывает напряжение с синусоидальной характеристикой. При подключении к его выводам С 1 , С 2 , С 3 потребителей, через цепь протекает одно-, или трёхфазный ток, схема ниже.

Схема трехфазного синхронного генератора

От действия изменяющейся электрической нагрузки также изменяется механическая нагрузка. При этом увеличивается или снижается скорость вращения, в результате чего меняются напряжение и частота. Чтобы такое изменение не происходило, электрические характеристики автоматически поддерживают на заданном уровне через обратные связи по напряжению и току на роторной обмотке. Если ротор генератора выполнен из постоянного магнита, он имеет ограниченные возможности стабилизации электрических параметров.

Ротор принудительно приводится во вращение. На его обмотку подаётся индукционный ток. В статоре магнитное поле ротора, вращающееся с той же скоростью, индуцирует 3 переменные ЭДС со сдвигом по фазе.

Основной магнитный поток генератора создаётся от действия постоянного тока, проходящего через обмотку ротора. Питание может поступать от другого источника. Также распространён способ самовозбуждения, когда незначительная часть переменного тока забирается от обмотки статора и проходит через обмотку ротора после предварительного выпрямления. Процесс основан на остаточном магнетизме, которого достаточно для запуска генератора.

Основные устройства, вырабатывающие почти всю электроэнергию в мире – это синхронные гидро-, или турбогенераторы.

Асинхронный генератор

Устройство генератора переменного тока асинхронного типа отличается разницей частоты вращения ЭДС ω и ротора ω r . Она выражается через коэффициент, называемый скольжением:

s = (ω – ω r)/ ω.

В рабочем режиме магнитное поле тормозит вращение якоря и его частота ниже.

Асинхронный двигатель может работать в генераторном режиме, если ω r >ω, когда ток меняет направление и энергия отдаётся обратно в сеть. Здесь электромагнитный момент становится тормозящим. Применение этого свойства распространено при опусканиях грузов или на электротранспорте.

Асинхронный генератор выбирают, когда требования к электрическим параметрам не очень высокие. При наличии пусковых перегрузок предпочтительней будет синхронный генератор.

Устройство автомобильного генератора ничем не отличается от обычного, вырабатывающего электрический ток. Он вырабатывает переменный ток, который затем выпрямляется.

Как выглядит автомобильный генератор

Конструкция состоит из электромагнитного ротора, вращающегося в двух подшипниках с приводом через шкив. Обмотка у него всего одна, с подачей постоянного тока через 2 медных кольца и графитовые щётки.

Электронное реле-регулятор поддерживает стабильное напряжение 12В, не зависящее от скорости вращения.

Схема автомобильного генератора

Ток от АКБ поступает на обмотку ротора через регулятор напряжения. Момент вращения передаётся ему через шкив и в витках обмотки статора индуктируется ЭДС. Генерируемый трёхфазный ток выпрямляется диодами. Поддерживание постоянного выходного напряжения производится регулятором, управляющим током возбуждения.

Когда двигатель увеличивает обороты, ток возбуждения уменьшается, что способствует поддерживанию постоянного выходного напряжения.

Классический генератор

Конструкция содержит двигатель, работающий на жидком топливе, вращающий генератор. Обороты ротора должны быть стабильными, иначе качество выработки электричества снижается. При износе генератора скорость вращения становится ниже, что является существенным недостатком устройства.

Если нагрузка на генератор ниже номинальной, он будет частично работать вхолостую, съедая лишнее топливо.

Поэтому важно при его приобретении сделать точный расчёт требуемой мощности, чтобы он был правильно загружен. Нагрузка ниже 25% запрещается, так как это влияет на его долговечность. В паспортах указаны все возможные режимы работы, которые необходимо соблюдать.

Многие виды классических моделей имеют приемлемые цены, высокую надёжность и большой диапазон мощностей. Важно загружать его как следует и вовремя производить техосмотр. На рисунке ниже представлены модели бензинового и дизельного генераторов.

Классический генератор: а) – бензиновый генератор, б) – дизельный генератор

Дизельный генератор

Генератор приводит в действие двигатель, работающий на дизельном топливе. ДВС состоит из механической части, панели управления, системы подачи топлива, охлаждения и смазки. От мощности ДВС зависит мощность генератора. Если она требуется небольшая, например, на бытовые приборы, целесообразным является применение бензинового генератора. Дизельные генераторы применяются там, где нужна большая мощность.

ДВС применяются в большинстве с верхней установкой клапанов. Они компактней, надёжней, удобны в ремонте, меньше выделяют токсичных отходов.

Генератор предпочитают выбирать с корпусом из металла, поскольку пластик менее долговечный. Устройства без щёток долговечней, а вырабатываемое напряжение более стабильное.

Ёмкость топливного бака обеспечивает работу на одной заправке не более 7 часов. В стационарных установках применяется внешний бак с большим объёмом.

Бензогенератор

В качестве источника механической энергии наиболее распространён четырёхтактный карбюраторный двигатель. Большей частью применяются модели от 1 до 6 кВт. Есть устройства до 10 кВт, способные обеспечить на определённом уровне загородный дом. Цены бензиновых генераторов являются приемлемыми, а ресурс – вполне достаточным, хотя и меньшим, чем у дизельных.

Генератор выбирается в зависимости от нагрузок.

Для больших пусковых токов и при частом применении электросварки лучше использовать синхронный генератор. Если взять асинхронный генератор мощнее, он справится с пусковыми токами. Однако, здесь важно, чтобы он был загружен, иначе бензин будет расходоваться нерационально.

Инверторный генератор

Машины применяются там, где требуется электроэнергия высокого качества. Они могут работать непрерывно или промежутками. Объектами энергопотребления здесь являются учреждения, где не допускаются скачки напряжения.

Основой инверторного генератора является электронный блок, который состоит из выпрямителя, микропроцессора и преобразователя.

Блок-схема инверторного генератора

Выработка электроэнергии начинается так же, как и в классической модели. Сначала вырабатывается переменный ток, который затем выпрямляется и поступает на инвертор, где снова превращается в переменный, с нужными параметрами.

Типы инверторных генераторов отличаются по характеру выходного напряжения:

  • прямоугольный – самый дешёвый, способный питать только электроинструменты;
  • трапецеидальный импульс – подходит для многих приборов, за исключением чувствительной техники (средняя ценовая категория);
  • синусоидальное напряжение – стабильные характеристики, подходящие для всех электроприборов (самая высокая цена).

Достоинства инверторных генераторов:

  • небольшие габариты и вес;
  • малый расход топлива за счёт регулирования выработки количества электроэнергии, которое требуется потребителям в данный момент;
  • возможность кратковременной работы с перегрузкой.

Недостатками являются высокие цены, чувствительность к температурным изменениям электронной части, небольшая мощность. Кроме того, дорого обходится ремонт электронного блока.

Инверторная модель выбирается в следующих случаях:

  • устройство приобретается только в тех случаях, когда обычный генератор не подходит, поскольку цена на него высокая;
  • требуется мощность не более 6 кВт;
  • для постоянного использования лучше подходят классические варианты генераторов;
  • необходимо частично снабжать электроэнергией бытовые приборы;
  • для бытового применения лучше использовать однофазные аппараты.

Видео. Генератор переменного тока.

Генераторы переменного тока способны восполнить электричество в доме при отказе стационарного устройства, а также применяются в любом месте, где необходима подача электроэнергии.

Это упорядоченное движение определенных заряженных частиц. Для того чтобы грамотно использовать весь потенциал электричества, необходимо четко понимать все принципы устройства и работы электрического тока. Итак, давайте разберемся, что же такое работа и мощность тока.

Откуда вообще берется электрический ток?

Несмотря на кажущуюся простоту вопроса, немногие способны дать на него вразумительный ответ. Конечно, в наши дни, когда технологии развиваются с неимоверной скоростью, человек особо не задумывается о таких элементарных вещах, как принцип действия электрического тока. Откуда берется электричество? Наверняка многие ответят "Ну, из розетки, ясное дело" или же просто пожмут плечами. А между тем, очень важно понимать, как происходит работа тока. Это следует знать не только ученым, но и людям, никак не связанным с миром наук, для их же всеобщего разностороннего развития. А вот уметь грамотно использовать принцип работы тока под силу не каждому.

Итак, для начала следует понять, что электричество не возникает ниоткуда: его вырабатывают специальные генераторы, которые находятся на различных электростанциях. Благодаря работе вращения лопастей турбин паром, полученным в результате нагрева воды углями или нефтью, возникает энергия, которая впоследствии с помощью генератора превращается в электричество. Генератор устроен очень просто: в центре устройства находится огромный и очень сильный магнит, который заставляет электрические заряды двигаться по медным проводам.

Каким образом электрический ток доходит до наших домов?

После того как с помощью энергии (тепловой или ядерной) было получено определенное количество электрического тока, его можно подавать людям. Работает такая подача электричества следующим образом: чтобы электричество успешно дошло до всех квартир и предприятий, его нужно "подтолкнуть". А для этого потребуется увеличить силу, которая и будет это делать. Она называется напряжением электрического тока. Принцип действия выглядит так: ток проходит через трансформатор, который увеличивает его напряжение. Далее электрический ток идет по кабелям, установленным глубоко под землей или же на высоте (ибо напряжение порой достигает 10000 Вольт, что является смертельно опасным для человека). Когда ток добирается до места своего назначения, он снова должен пройти через трансформатор, который теперь уже уменьшит его напряжение. Затем он проходит по проводам к установленным щитам в многоквартирных домах или других зданиях.

Проведенное через провода электричество можно использовать благодаря системе розеток, подключая к ним бытовые приборы. В стенах же проводятся дополнительные провода, через которые течет электрический ток, и благодаря именно ему работает освещение и вся техника в доме.

Что такое работа тока?

Энергия, которую несет в себе электрический ток, с течением времени преобразуется в световую или же тепловую. Например, когда мы включаем лампу, электрический вид энергии превращается в световую.

Если говорить доступным языком, то работа тока - это то действие, которое произвело само электричество. При этом ее можно очень легко подсчитать по формуле. Исходя из закона о сохранении энергии, можем сделать вывод, что электрическая энергия не пропала, она полностью или частично перешла в другой вид, отдав при этом определенное количество теплоты. Эта теплота и есть работа тока, когда он проходит по проводнику и нагревает его (происходит теплообмен). Так выглядит формула Джоуля-Ленца: A = Q = U*I*t (работа равна количеству теплоты или же произведению мощности тока на время, за которое он протекал по проводнику).

Что означает постоянный ток?

Электрический ток бывает двух видов: переменный и постоянный. Они различаются тем, что последний не меняет своего направления, он имеет два зажима (положительный "+" и отрицательный "-") и начинает свое движение всегда из "+". А переменный ток имеет две клеммы - фазу и ноль. Именно из-за наличия одной фазы на конце проводника, его называют также однофазным.

Принципы устройства однофазного переменного и постоянного электрического тока абсолютно разные: в отличие от постоянного, переменный меняет и свое направление (образуя поток как из фазы в направлении к нулю, так из нуля по направлению к фазе), и свою величину. Так, например, переменный ток периодически меняет значение своего заряда. Получается, что при частоте 50 Гц (50 колебаний в секунду) электроны меняют направление своего движения ровно 100 раз.

Где используется постоянный ток?

Постоянный электрический ток обладает некоторыми особенностями. Ввиду того, что он течет строго по одному направлению, его сложнее трансформировать. Источниками постоянного тока можно считать следующие элементы:

  • аккумуляторы (как щелочные, так и кислотные);
  • обычные батарейки, используемые в мелких приборах;
  • а также различные устройства типа преобразователей.

Работа постоянного тока

Каковы его главные характеристики? Это работа и мощность тока, причем оба эти понятия очень тесно связаны друг с другом. Мощность подразумевает под собой скорость работы в единицу времени (за 1 с). По закону Джоуля-Ленца получаем, что работа постоянного электрического тока равна произведению силы самого тока, напряжения и времени, в течение которого была совершена работа электрического поля по переносу зарядов вдоль проводника.

Так выглядит формула по нахождению работы тока с учетом закона Ома о сопротивлении в проводниках: A = I 2 *R*t (работа равна квадрату силы тока умноженному на значение сопротивления проводника и еще раз умноженному на значение времени, за которое совершалась работа).